Q.P. Code: 19HS0836				R19	
Do	m l				
NC	5. 1				
	8	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PO (AUTONOMOUS)	UTTUR	2	
		B.Tech II Year II Semester Regular Examinations July-2021			
		DISCRETE MATHEMATICS			
Tim	a. 3	(Common to CSE & CSII)	Jarke 6	0	
1 IIII	c . J		1a1K5. 0	0	
		(Answer all Five Units $5 \times 12 = 60$ Marks) UNIT-I			
1	a	Obtain the PCNF and PDNF of $(\neg P \rightarrow R) \land (Q \leftrightarrow R)$.	L1	6 M	
	b	Verify that S is a valid conclusion from the premises $P \rightarrow Q, P \rightarrow R$,	L4	6M	
		$\neg (Q \land R)$ and $S \lor P$.			
		OR			
2	a	Prove that $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)(P(x)) \lor (\exists x)(Q(x))$ using indirect method.	L4	6M	
	b	Show that $(P \to Q) \land (Q \to R) \Rightarrow (P \to Q)$	L4	6M	
		UNIT-II			
3	a		L3	6M	
		If $f,g: R \to R$ be defined by $f(x) = 2x + 1$, $g(x) = \frac{\pi}{3}$, then verify			
		that $(g \circ f)^{-1}(x) = f^{-1} \circ g^{-1}(x)$.			
	b	Prove that the set of all integers Z is an abelian group with the operation *	L4	6M	
		defined by $a * b = a + b + 1, \forall a, b \in \mathbb{Z}$.		01.1	
		OR			
4	a	Let P(A) be a power set of A. Construct the Hasse diagram for $(P(A), \subseteq)$,	L3	6M	
		where (i) $A = \{a, b, c\}$ (ii) $A = \{a, b, c, d\}$.			
	b	Define homomorphism. Let (G, \bullet) be a group, if $f: G \to G$ is given by	L4	6M	
		$f(a) = a^2 \forall a \in G$ is homomorphism then prove that G is an abelian			
		groun			
5	9	Find the coefficient of (i) $x^3y^2z^2$ in $(2x + y + z)^7$ and (i) x^3y^7 in	L1	6M	
0	a	Find the coefficient of (i) $x y z$ in $(2x - y + z)$ and (i) $x y$ in		UIVI	
		$(x-3y)^{10}$.			
	b	Find how many integers between 1 and 60 that are divisible by 2 nor by 3	L1	6M	
		and nor by 5. Also determine the number of integers divisible by 5 not by 2 not by 2			
		2, not by 3:			
6	9	Enumerate the number of non negative integral solutions to the inequality	T.1	6M	
v	a	$x_1 + x_2 + x_3 + x_4 + x_5 \le 19$.		UIVI	
	h	How many permutations can be formed out of the letters of word	T 1	6M	
	U	"SUNDAY"? How many of these (i) Begin with S. (ii) End with Y.		UIVI	

(iii) Begin with S & end with Y (iv) S &Y always together.

Page 1 of 2

Q.P. Code: 19HS0836

UNIT-IV

- 7 a Solve the recurrence relation using generating functions L6 6M $a_n - 9a_{n-1} + 20a_{n-2} = 0, n \ge 2$ and $a_0 = -3, a_1 = -10$. b Solve $y_{n+2} - y_{n+1} - 2y_n = n^2$. L6 6M
 - **OR OR**
- 8 a Solve $a_n 4a_{n-1} + 4a_{n-2} = (n+1)^2$, such that $a_0 = 0, a_1 = 1$. L6 6M
 - **b** Solve the recurrence relation $a_{n+2} 2a_{n+1} + a_n = 2^n$ with the initial L6 6M conditions $a_0 = 2, a_1 = 1$.

UNIT-V

- **9** a Suppose a graph has vertices of degree 0, 2, 2, 3 and 9. How many edges does L1 **6M** the graph have?
 - b Define Spanning tree and explain the algorithm for Breadth First Search L1 6M (BFS) traversal of a graph with suitable example.

OR

10 a Define graph isomorphism. Prove or disprove the following two graphs are L4 **6M** isomorphic?

b Let G be a 4 – Regular connected planar graph having 16 edges. Find the L1 6M number of regions of G.

*** END ***